7-2: MULTIPLICATION PROPERTIES OF EXPONENTS

Lesson Objectives:

- Multiply powers
- Work with scientific notation

Multiplying

PROPERTY: MULTIPLYING POWERS WITH THE SAME BASE

For every nonzero number *a* and integers *m* and *n*,

EXAMPLE 1: MULTIPLYING POWERS

Simplify each expression.			
1. $11^4 \cdot 11^3$	2. $5^{-2} \bullet 5^2$	3. $4^3 \cdot 4^2$	4. $5^{-6} \bullet 5^4$

$J_1 J_2 J_3 J_4 J_5 J_6 J_6 J_6 J_6 J_6 J_6 J_6 J_6 J_6 J_6$	5. $3^8 \cdot 3^5$	6. $6^{-7} \bullet 6^9$	7. $(-2)^3 \bullet (-2)^{-5}$	8. $2^8 \cdot 2^{-9} \cdot 2$
---	--------------------	-------------------------	-------------------------------	-------------------------------

When variable factors have more than one base, be careful to combine only the powers with the same base.

EXAMPLE 2: MULTIPLYING POWERS IN AN ALGEBRAIC EXPRESSION

Simplify each expression. 9. $(3d^{-4})(5d^8)$ 10. $(-8m^4)(4m^8)$ 11. $n^{-6} \cdot n^{-9}$ 12. $a^3 \cdot a$

13.
$$(3p^{-15})(6p^{11})$$

14. $p^7 \cdot q^5 \cdot p^6$
15. $(-1.5a^5b^2)(6a)$
16. $\frac{1}{b^7 \cdot b^5}$
17. $(-2d^3e^3)(6d^4e^6)$
18. $p^{-5} \cdot q^2 \cdot p^4$
19. $\frac{1}{n^7 \cdot n^{-5}}$
20. $(8d^4)(4d^7)$

Working With Scientific Notation

EXAMPLE 3: MULTIPLYING NUMBERS IN SCIENTIFIC NOTATION

Simplify each expression. Write each answer in proper scientific notation.

21. $(7 \times 10^{2})(4 \times 10^{5})$ 22. $(7 \times 10^{7})(5 \times 10^{-5})$ 23. $(3 \times 10^{8})(3 \times 10^{4})$ 24. $(9.5 \times 10^{-4})(3 \times 10^{-5})$

25.
$$(5 \times 10^7)(4 \times 10^3)$$
 26. $(6 \times 10^{-6})(5.2 \times 10^4)$ 27. $(4 \times 10^6)(9 \times 10^8)$ 28. $(6.1 \times 10^9)(8 \times 10^{14})$

EXAMPLE 4: REAL-WORLD PROBLEM SOLVING

29. A human body contains about $3.2 \times 10^4 \mu L$ (microliters) of blood for each pound of body weight. Each microliter of blood contains about 5×10^6 red blood cells. Find the approximate number of red blood cells in the body of a 125-pound person.

30. In 1990, the St. Louis metropolitan area had an average of $82 \times 10^{-6} \frac{g}{m^3}$ of pollution in the air. How many grams of pollutants where there in $2 \times 10^3 m^3$ of air?

31. Light travels approximately 5.87×10^{12} miles in one year. This distance is called a light-year. Suppose a star is 2×10^4 light-years away. How many miles away is that star?

32. The weight of 1 m³ of air is approximately 1.3×10^3 grams. Suppose that the volume of air inside of a building is 3×10^6 m³. How much does the air inside the building weigh?

33. Light travels 1.18×10^{10} inches in 1 second. How far will light travel in 1 nanosecond or 1×10^{-9} seconds?

Name		8-3 Practice Worksheet	Period
Simplify each expression. 1. $10^{-6} \cdot 10^5 \cdot 10^1$	2. $(1.025)^2 (1.025)^{-2}$	3. $5t^{-2} \cdot 2t^{-5}$	4. $(-2.4n^4)(2n^{-1})$
5. $(15a^3)(-3a)$	6. $(4c^4)(ac^3)(3a^5c)$	7. $-m^2 \cdot 4r^3 \cdot 12r^{-4} \cdot 5m$	

8.
$$(4 \times 10^{6})(2 \times 10^{-3})$$
 9. $(5 \times 10^{7})(3 \times 10^{14})$

10. Earth's crust contains approximately 120 trillion metric tons of gold. One metric ton of gold is worth about \$64 million. What is the approximate value of the gold in the Earth's crust?

11. Light travels through space at a constant speed of about 3×10^5 km/s. Sunlight reflecting from the moon takes about 1.28×10^0 s to reach Earth. Find the distance from the moon to Earth.

Complete each equation.
$$2^? \bullet 2^4 = 2^{-1}$$
 $c^? \bullet c^{-5} = c^6$ $x^3 y^2 \bullet x^2 = y^2$ 12.13.14.

Find the area of each figure.

15. $A_{rectangle} = lw$

Simplify.			
19. $\frac{5}{c \bullet c^{-4}}$	20. $2a^2(3a+5)$	21. $8m^3(m^2 + 7)$	22. $-4x^3(2x^2-9x)$
23. $3^x \bullet 3^{2-x} \bullet 3^2$	24. $2^n \cdot 2^{n+2} \cdot 2$	25. $(a+b)^2(a+b)^{-1}$	26. $5^{x+1} \cdot 5^{1-x}$